III. Mathematical Modeling
 
RD Model
 
Having completed the regression analysis for TID, we turned to the task of developing a formula for RD by using the same techniques. The predictor variables used were PREL, AREL, and RD1 (brand loyalty). From these variables, we used a multiple regression analysis and derived the following table and formula:
 
| Regression Statistics |   |   |   |   |   |   |   | |
| Multiple
  R | 0.978525574 |   |   |   |   |   |   |   | 
| R Square | 0.957512299 |   |   |   |   |   |   |   | 
| Adjusted
  R Square | 0.956783938 |   |   |   |   |   |   |   | 
| Standard
  Error | 0.056004573 |   |   |   |   |   |   |   | 
| Observations | 179 |   |   |   |   |   |   |   | 
|   |   |   |   |   |   |   |   |   | 
| ANOVA |   |   |   |   |   |   |   |   | 
|   | df | SS | MS | F | Significance F |   |   |   | 
| Regression | 3 | 12.36989885 | 4.123299616 | 1314.612994 | 9.7505E-120 |   |   |   | 
| Residual | 175 | 0.548889625 | 0.003136512 |   |   |   |   |   | 
| Total | 178 | 12.91878847 |   |   |   |   |   |   | 
|   |   |   |   |   |   |   |   |   | 
|   | Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | 
| Intercept | 16.12999601 | 0.444521299 | 36.28621627 | 2.37432E-83 | 15.25268317 | 17.00730884 | 15.25268317 | 17.00730884 | 
| Prel | -16.44445198 | 0.444138495 | -37.02550482 | 1.0431E-84 | -17.32100931 | -15.56789465 | -17.32100931 | -15.56789465 | 
| Arel | 0.779630225 | 0.02694443 | 28.93474561 | 1.33291E-68 | 0.726452359 | 0.832808091 | 0.726452359 | 0.832808091 | 
| RD1 | 0.533422048 | 0.016432467 | 32.46147126 | 5.6314E-76 | 0.500990725 | 0.565853371 | 0.500990725 | 0.565853371 | 
 
RD =
-16.44*PREL + .7796*AREL + .5334RD1 + 16.13
 
We performed all of our standard sanity checks, which yielded microscopic P-values, and a R-square value of .96 indicating a near perfect formula. With TID and RD mathematically defined, we were now able to complete our model for firm demand.