III. Mathematical Modeling

 

RD Model

 

Having completed the regression analysis for TID, we turned to the task of developing a formula for RD by using the same techniques.  The predictor variables used were PREL, AREL, and RD1 (brand loyalty).  From these variables, we used a multiple regression analysis and derived the following table and formula:

 

Regression Statistics

 

 

 

 

 

 

 

Multiple R

0.978525574

 

 

 

 

 

 

 

R Square

0.957512299

 

 

 

 

 

 

 

Adjusted R Square

0.956783938

 

 

 

 

 

 

 

Standard Error

0.056004573

 

 

 

 

 

 

 

Observations

179

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA

 

 

 

 

 

 

 

 

 

df

SS

MS

F

Significance F

 

 

 

Regression

3

12.36989885

4.123299616

1314.612994

9.7505E-120

 

 

 

Residual

175

0.548889625

0.003136512

 

 

 

 

 

Total

178

12.91878847

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

16.12999601

0.444521299

36.28621627

2.37432E-83

15.25268317

17.00730884

15.25268317

17.00730884

Prel

-16.44445198

0.444138495

-37.02550482

1.0431E-84

-17.32100931

-15.56789465

-17.32100931

-15.56789465

Arel

0.779630225

0.02694443

28.93474561

1.33291E-68

0.726452359

0.832808091

0.726452359

0.832808091

RD1

0.533422048

0.016432467

32.46147126

5.6314E-76

0.500990725

0.565853371

0.500990725

0.565853371

 

RD = -16.44*PREL + .7796*AREL + .5334RD1 + 16.13

 

We performed all of our standard sanity checks, which yielded microscopic P-values, and a R-square value of .96 indicating a near perfect formula.  With TID and RD mathematically defined, we were now able to complete our model for firm demand.

 

 

FD Model