III.  Mathematical Modeling

 

TID Model

 

The first model we built was a simple linear analysis using Quarter (measure of time) as the independent variable to estimate TID.  The table below shows the results:

 

Regression Statistics

 

 

 

 

 

 

 

Multiple R

0.694657411

 

 

 

 

 

 

 

R Square

0.482548918

 

 

 

 

 

 

 

Adjusted R Square

0.45211062

 

 

 

 

 

 

 

Standard Error

3873.447436

 

 

 

 

 

 

 

Observations

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA

 

 

 

 

 

 

 

 

 

df

SS

MS

F

Significance F

 

 

 

Regression

1

237857200.2

237857200.2

15.85334712

0.000964868

 

 

 

Residual

17

255061115.6

15003595.04

 

 

 

 

 

Total

18

492918315.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

14218.07018

1849.830412

7.686147922

6.26685E-07

10315.26371

18120.87664

10315.26371

18120.87664

Quarter

645.9824561

162.2408597

3.981626191

0.000964868

303.683685

988.2812273

303.683685

988.2812273

 

 

TID = 646*Quarter + 14218

 

From this equation you can calculate the TID by multiplying the Quarter number by 646 and adding a constant of 14218.  To check the validity of this equation, we must look at  the P-value, which is less than .05, so this appears to be a viable model.  The R-square value of .48 is adequate, but could be better.  Intuitively we can look at the formula and notice that TID increases quarter over quarter, which is simplistic to say the least.  We would do well to look at the other variables to see if we can do better.

 

Next, we performed a multiple regression analysis that was built by using Quarter, AvgPrice, and AvgAdv as the predictor variables.  The table below is the result.

 

Regression Statistics

 

 

 

 

 

 

 

Multiple R

0.952334882

 

 

 

 

 

 

 

R Square

0.906941728

 

 

 

 

 

 

 

Adjusted R Square

0.888330073

 

 

 

 

 

 

 

Standard Error

1748.716231

 

 

 

 

 

 

 

Observations

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA

 

 

 

 

 

 

 

 

 

df

SS

MS

F

Significance F

 

 

 

Regression

3

447048189

149016063

48.72977468

5.72576E-08

 

 

 

Residual

15

45870126.82

3058008.455

 

 

 

 

 

Total

18

492918315.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

130249.285

50620.06503

2.573076208

0.021204383

22355.10406

238143.4659

22355.10406

238143.4659

Quarter

132.2282604

102.9946976

1.283835609

0.218677295

-87.29987602

351.7563967

-87.29987602

351.7563967

Avg_Price

-358.6135195

122.1831725

-2.935048355

0.010239797

-619.0409472

-98.1860919

-619.0409472

-98.1860919

Avg_Adv

0.263430426

0.063281565

4.162830481

0.000833208

0.128548881

0.398311972

0.128548881

0.398311972

 

TID = 132.22*Quarter – 358.61*AvgPrice + .2634*AvgAdv +130249.29

 

In this model, we achieved a much higher R-square of .90, which indicates we have accounted for 90% of the TID in our formula.  However, the Quarter’s P-value of .218 is much too high.  This effectively rules out this variable, and the formula should be dropped.

 

Finally, we re-ran the multiple regression analysis without Quarter as a variable and came up with the following table and formula:

 

Regression Statistics

 

 

 

 

 

 

 

Multiple R

0.946951041

 

 

 

 

 

 

 

R Square

0.896716275

 

 

 

 

 

 

 

Adjusted R Square

0.883805809

 

 

 

 

 

 

 

Standard Error

1783.788804

 

 

 

 

 

 

 

Observations

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA

 

 

 

 

 

 

 

 

 

df

SS

MS

F

Significance F

 

 

 

Regression

2

442007875.9

221003937.9

69.45653998

1.29496E-08

 

 

 

Residual

16

50910439.94

3181902.496

 

 

 

 

 

Total

18

492918315.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

164336.1704

43962.46954

3.738101434

0.001792219

71139.91931

257532.4215

71139.91931

257532.4215

Avg_Price

-445.1684971

103.9426705

-4.282827208

0.000570731

-665.5170653

-224.819929

-665.5170653

-224.819929

Avg_Adv

0.262728595

0.064548343

4.070260894

0.000890413

0.125892252

0.399564938

0.125892252

0.399564938

 

TID = .-445.17*AvgPrice + .2627*AvgAdv +164336.17

 

We first note that, by dropping Quarter as a variable, the R-square change was .01.  Quarter had very little impact on the predictability of our formula and we are still left with a very respectable .90 R-square value.  The P-values of the remaining variables are still less than .05, indicating a very low probability of a Type I error.  Therefore, this is a good model to use going forward.

 

 

RD Model